

## APPROVAL SHEET

# 承认书

| 客户名称<br>Customer               |                                                                             |
|--------------------------------|-----------------------------------------------------------------------------|
| 产品型号<br>Part NO.               | M101B30-42-273-0101                                                         |
| 产品内容<br>Product type           | Mode: TFT LCD Module                                                        |
| 备注栏<br>Remarks                 | □ APPROVAL FOR SEPCIFICATIONS ONLY ■ APPROVAL FOR SEPCIFICATIONS AND SAMPLE |
| 客户确认签章<br>Signature by Custome | er:                                                                         |
|                                | 备注/ Notes:                                                                  |
|                                |                                                                             |
|                                |                                                                             |

| PREPARED BY | CHECKED BY | APPROVED BY |
|-------------|------------|-------------|
|             |            |             |
|             |            |             |

#### 1.0 GENERAL DESCRIPTION

#### 1.1 Introduction

The TFT MODE is a color active matrix TFT LCD single cell using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This panel has a 10.1 inch diagonally measured active area with WSVGA resolutions (1024 horizontal by 600 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16.7M colors.

TFT LCD Panel
1024×RGB ×600

#### 1.2 Features

- Thin and light weight
- 0.5t Glass
- IC(COG) 1+1
- Gate & Data Layer交替

## 1.3 Application

- GPS Device
- Pad

## 1.4 General Specification

The followings are general specifications at the single cell.

<Table 1. General Specifications>

| Parameter         | Specification         | Unit   | Remarks  |
|-------------------|-----------------------|--------|----------|
| Active area       | 222.72(H) ×125.28(V)  | mm     |          |
| CF size           | 228.0(H) ×130.5(V)    | mm     |          |
| Number of pixels  | 1024 (H) ×600 (V)     | pixels |          |
| Pixel pitch       | 0.0725(H) × 0.2088(V) | mm     | 非 1:3结构  |
| Pixel arrangement | RGB Vertical stripe   |        |          |
| Display colors    | 16.7M                 | colors |          |
| Color Gamut       | 50                    | %      | @C Light |
| Display mode      | Normally Black        |        |          |
| Panel Size        | 230.4 (H) x 134.2 (V) | mm     |          |

## 2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

## < Table 2. Absolute Maximum Ratings>

| Parameter                | Symbol          | Min. | Max. | Unit | Remarks     |
|--------------------------|-----------------|------|------|------|-------------|
| LC operating Voltage [1] | V <sub>OP</sub> |      | 4.6  | V    | Ta=25+/-2°C |
| Operating Temperature    | T <sub>OP</sub> | -20  | +70  | လ    |             |
| (Humidity)               | RH              |      | 90   | %    | At 60°C     |
| Storage Temperature      | T <sub>ST</sub> | -30  | +80  | °C   |             |
| (Humidity)               | RH              |      | 90   | %    | At 60°C     |

## [1] Liquid Crystal driving voltage

Due to the characteristics of LC Material, this voltage varies with environmental temperature.



## 3.0 ELECTRICAL SPECIFICATIONS

## 3.1Electrical Specifications

< Table 3. Electrical specifications >

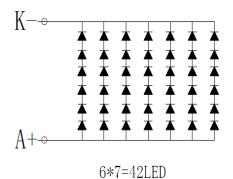
[Ta =25±2 °C]

| Parameter                                                                                                                 | Symbol       | Values  |         | Unit | Notes |       |  |
|---------------------------------------------------------------------------------------------------------------------------|--------------|---------|---------|------|-------|-------|--|
| Parameter                                                                                                                 | Symbol       | Min     | Min Typ |      | Unit  | Notes |  |
| Power Supply Input Voltage                                                                                                | VDD          | 1.71    | 1.8     | 1.89 | Vdc   |       |  |
| Power Supply Ripple Voltage                                                                                               | VRP          | -       | -       | 200  | mV    |       |  |
| Power Supply Current                                                                                                      | IDD          | -       | 35      | 45   | mA    | 1     |  |
| Input High Threshold Voltage                                                                                              | VIH          | 1.32    | -       | 1.89 | V     |       |  |
| Input Low Threshold Voltage                                                                                               | VIL          | 0       | -       | 0.57 | V     |       |  |
| Time that the transmitter shall continue sending HS clock after the last associated Data Lane has transitioned to LP mode | TCLK-POST    | 60+52UI | -       | -    | ns    |       |  |
| Detection time that the clock has stopped toggling                                                                        | TCLK-MISS    | -       | -       | 60   | ns    |       |  |
| Time to drive LP-00 to prepare for HS clock transmission                                                                  | TCLK-PREPARE | 38      | -       | 95   | ns    |       |  |
| Minimum lead HS-0 drive period before                                                                                     | TCLK-PREPARE | 300     |         |      | ne    |       |  |
| starting clock                                                                                                            | + TCLK-ZERO  | 300     | -       | -    | ns    |       |  |
| Time to enable Clock Lane receiver line termination measured from when Dn cross VIL,MAX                                   | THS-TERM-EN  | -       | -       | 38   | ns    |       |  |
| Minimum time that the HS clock must be prior to any associated data lane beginning the transmission from LP to HS mode    | TCLK-PRE     | 8       | -       | -    | UI    |       |  |
| Time to drive HS differential state after last payload clock bit of a HS transmission burst                               | TCLK-TRAIL   | 60      | -       | -    | ns    |       |  |

#### 3.0 ELECTRICAL SPECIFICATIONS

## 3.2 Electrical Specifications

## < Table 4.Panel Electrical specifications >

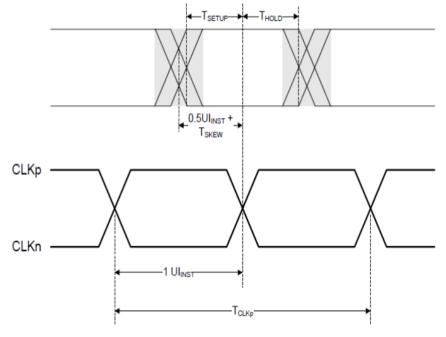

[Ta =25±2 °C]

| Parameter                    | Symbol | Value | Unit | Remarks         |
|------------------------------|--------|-------|------|-----------------|
| Power For Analog Circuit     | AVDD   | 9.6   | V    |                 |
| TFT Gate ON Voltage          | VGH    | 18    | V    | VGH-<br>VGL<=40 |
| TFT Gate OFF Voltage         | VGL    | -6    | V    | VGL<-40<br>V    |
|                              | VCOMH  | 4.4   | V    |                 |
| TFT Common Electrode Voltage | VCOML  | 4.0   | V    |                 |

#### Notes:

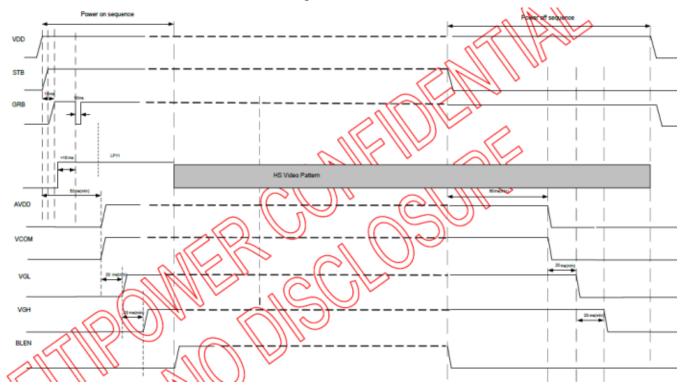
- 1. VGH is TFT Gate operating voltage.
- 2. VGL is TFT Gate operating voltage. The low voltage level of VGL signal must be fluctuates with same phase as Vcom.
- 3. Vcom must be adjusted to optimize display quality, as Crosstalk and Contrast Ratio etc..
- 4. The value is just the reference value. The customer can optimize the setting value by the different D-IC.

| Parameter                                | Symbol | Min.   | Тур. | Max. | Unit              | Note   |
|------------------------------------------|--------|--------|------|------|-------------------|--------|
| Supply voltage of white LED backlight    | VL     | 17.3   | 18.0 | 21.6 | V                 | Note 1 |
| Current for LED backlight                | IL     |        | 140  |      | mA                |        |
| Luminance (on the module surface,CA-210) |        |        | 450  | -    | cd/m <sup>2</sup> |        |
| LED life time                            | -      | 50,000 | -    | -    | Hr                | Note 2 |




## 4.0 MIPI INTERFACE AC PARAMETER

The specification of the MIPI interface High speed transmission is shown in Table 5.


< Table 5. High speed transmission >

| Parameter                                         | Symbol         | Min      | Тур  | Max  | Unit   |
|---------------------------------------------------|----------------|----------|------|------|--------|
| Clock frequency                                   | RxFCLK         | 40.8     | 51.2 | 67.2 | MHz    |
| UI instantaneous                                  | UIINST         | 2        | -    | 12.5 | ns     |
| Data to Clock<br>Skew(measured at<br>transmitter) | TSKEW(TX)      | -0.15    | -    | 0.15 | UIINST |
| Data to Clock Setup time(measured at receiver)    | TSETUP(RX)     | 0.15     | -    | -    | UIINST |
| Data to Clock Hold time(measured at receiver)     | THOLD(RX)      | 0.15     | -    | -    | UIINST |
| 20%~80% rise time and                             | TD TE          | 150      |      | -    | ps     |
| fall time                                         | TR, TF Referen | nce Time |      | ^ 7  | UIINST |



## **5.0 POWER SEQUENCE**

In order to prevent IC from power on reset fail, the rising time(TPOR) of the digital power Supply VDD should be maintained within the given specifications. Refer to "AC Characteristics" for more detail on timing.



## Notes:

1. CLK and Data Lanes should keep in LP11(stop state) before GRB

#### 6.0 OPTICAL SPECIFICATION

#### 6.1 Overview

The test of Optical specifications shall be measured in a dark room (ambient luminance  $\leq 1$ lux and temperature =  $25\pm 2^{\circ}$ C) with the equipment of Luminance meter system (Goniometer system and TOPCON BM-5) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of  $\theta$  and  $\Phi$  equal to  $\theta$ . We refer to  $\theta$ 0=0 (= $\theta$ 3) as the 3 o"clock direction (the "right"),  $\theta$ 0=90 (= $\theta$ 12) as the 12 o"clock direction ("upward"),  $\theta$ 0=180 (= $\theta$ 9) as the 9 o"clock direction ("left") and  $\theta$ 0=270(= $\theta$ 6) as the 6 o"clock direction ("bottom"). While scanning  $\theta$ and/or  $\emptyset$ , the center of the measuring spot on the Display surface shall stay fixed.

Optimum viewing angle direction is 12 "clock.

#### 6.2 Optical Specifications

< Table 6. Optical Specifications>

| Parame                  | Parameter          |                 | Condition           | Min.   | Тур.  | Max.   | Unit | Remark                       |  |
|-------------------------|--------------------|-----------------|---------------------|--------|-------|--------|------|------------------------------|--|
|                         | Horizontal         | $\Theta_3$      |                     | -      | 85    | -      | Deg. |                              |  |
| Viewing Angle           | попиона            | $\Theta_9$      | CR > 10             | -      | 85    | -      | Deg. | WV-Pol                       |  |
| range                   | Vertical           | Θ <sub>12</sub> | CK > 10             | -      | 85    | -      | Deg. | Note 1                       |  |
|                         | Vertical           | $\Theta_6$      |                     | -      | 85    | -      | Deg. |                              |  |
| Luminance Co            | ntrast ratio       | CR              |                     | -      | 800   | -      |      | Note 2                       |  |
| Cell Transm             | ittance            | Tr              |                     | 4.8    | 5.8   | -      | %    | Base on<br>C Light<br>Note 3 |  |
| White Chron             | White Chromaticity |                 |                     |        | 0.307 |        |      |                              |  |
| white Chron             |                    |                 |                     |        | 0.338 |        |      |                              |  |
|                         | Red                | $R_x$           | ⊖ = 0°              | ⊝ = 0∘ |       | 0.605  |      |                              |  |
|                         | Reu                | $R_y$           |                     | TYP.   | 0.336 | TYP.   |      | Note 4<br>Base on            |  |
| Reproduction            | Green              | $G_x$           |                     | - 0.03 | 0.297 | + 0.03 |      | C Light                      |  |
| of color (C light       | ) Green            | $G_y$           |                     |        | 0.552 |        |      | 5 – 9                        |  |
|                         | Blue               | B <sub>x</sub>  |                     |        | 0.139 |        |      |                              |  |
|                         | Diue               | $B_y$           |                     |        | 0.132 |        |      |                              |  |
| Color Gamut (C light    |                    | t)              |                     | -      | 50    | -      | %    |                              |  |
| Response<br>(Rising + F |                    | T <sub>RT</sub> | Ta= 25° C<br>Θ = 0° | -      | 30    | 40     | ms   | Note 5                       |  |

#### Note:

- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface (see FIGURE 5).
- Contrast measurements shall be made at viewing angle of Θ= 0 and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (see FIGURE 5) Luminance Contrast Ratio (CR) is defined mathematically.

- 3. Transmittance is the Value with Polarizer.
- 4. The color chromaticity coordinates specified in Table 6 shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Calculation is based on C light.
- 5. The electro-optical response time measurements shall be made as FIGURE 6 by switching the "data" input signal ON and OFF. The times needed for the luminance to change from 10% to 90% is Tr, and 90% to 10% is Td.

## 7.0 RELIABLITY TEST

The Reliability test items and its conditions are shown in below.

<Table 7. Reliability Test Parameters >

| No | Test Items                                        | Conditions                                              |        |
|----|---------------------------------------------------|---------------------------------------------------------|--------|
| 1  | High temperature storage test                     | Ta = 80 °C, 240 hrs                                     |        |
| 2  | Low temperature storage test                      | Ta = -30 °C, 240 hrs                                    |        |
| 3  | High temperature & high humidity (operation test) | Ta = 60 °C, 90%RH, 240hrs                               |        |
| 4  | High temperature operation test                   | Ta = 70 °C, 24hrs                                       | Note 1 |
| 5  | Low temperature operation test                    | Ta = -20 °C, 24hrs                                      |        |
| 6  | Thermal shock                                     | Ta = -30 °C $\leftrightarrow$ 80 °C (0.5 hr), 100 cycle |        |
| 7  | PCT                                               | 121°C 100% 2atm, 24hr                                   |        |
| 8  | Packing Vibration Test                            | f=5-200Hz/a=1.47G/Random/X,Y,±Z/各<br>30min              | Note 2 |
| 9  | Drop Test                                         | 一角三棱六面,自由落体各跌落一次                                        | Note 2 |

## 8.0 FPC/IC PIN ASSIGNMENT

## Figure 1. FPC Pin Assignment

| Pin No. | Symbol    | Туре | Function                  |
|---------|-----------|------|---------------------------|
| 1       | VCOM      | -    | Common Voltage            |
| 2       | VDD       | Р    | Power supply 1.8V         |
| 3       | VDD       | Р    | Power supply 1.8V         |
| 4       | NC        | Р    | No connection             |
| 5       | Reset     | ı    | Global reset pin(1.8V)    |
| 6       | STBYB     |      | Stand by mode             |
| 7       | GND       | Р    | Ground                    |
| 8       | MIPI-0N   | 1/0  | MIPI Date negative signal |
| 9       | MIPI-0P   | 1/0  | MIPI Date Positive signal |
| 10      | GND       | Р    | Ground                    |
| 11      | MIPI-1N   | ı    | MIPI Date negative signal |
| 12      | MIPI-1P   | I    | MIPI Date Positive signal |
| 13      | GND       | Р    | Ground                    |
| 14      | MIPI-CLKN | ı    | MIPI CLK negative signal  |
| 15      | MIPI-CLKP | ı    | MIPI CLK Positive signal  |
| 16      | GND       | P    | Ground                    |
| 17      | MIPI-2N   | I    | MIPI Date negative signal |
| 18      | MIPI-2P   | I    | MIPI Date Positive signal |
| 19      | GND       | Р    | Ground                    |
| 20      | MIPI-3N   | ı    | MIPI Date negative signal |
| 21      | MIPI-3P   | ı    | MIPI Date Positive signal |
| 22      | GND       | Р    | Ground                    |
| 23      | NC        | -    | No connection             |
| 24      | AVDD      | -    | Power for Analog Circuit  |
| 25      | NC        |      | No connection             |
| 26      | VGL       | -    | Gate OFF Voltage          |
| 27      | NC        | -    | No connection             |
| 28      | VGH       | -    | Gate ON Voltage           |
| 29      | NC        | -    | No connection             |
| 30      | GND       | Р    | Ground                    |
|         |           |      |                           |
|         |           |      |                           |
|         |           |      |                           |
|         |           |      |                           |
|         |           |      |                           |
|         |           |      |                           |
|         |           |      |                           |
|         |           |      |                           |
|         |           |      |                           |
|         |           |      |                           |

#### 9.0 APPENDIX

Figure 4. The Definition of Vth & Vsat

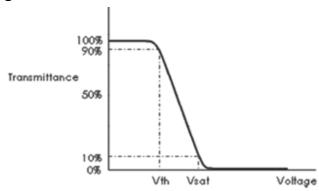



Figure 5. Measurement Set Up

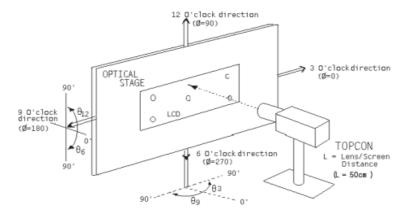
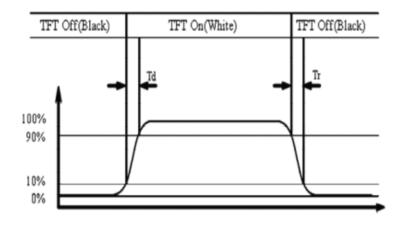
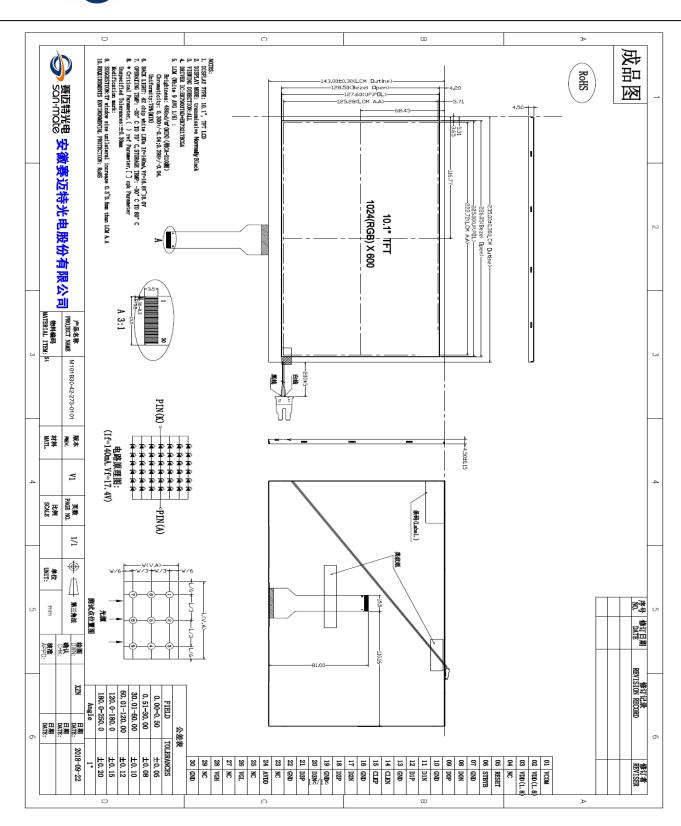





Figure 6. Response Time Testing



# 賽迈特光电 安徽赛迈特光电股份有限公司

