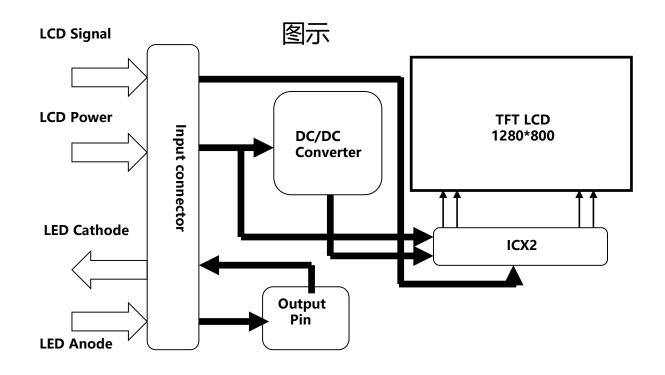
APPROVAL SHEET 承认书

客户名称 Customer	
产品型号 Part NO.	M101B36-218-0501
产品内容 Product type	Mode: TFT LCD Module
备注栏 Remarks	□ APPROVAL FOR SEPCIFICATIONS ONLY ■ APPROVAL FOR SEPCIFICATIONS AND SAMPLE
客户确认签章 Signature by Custom	er:
备注/ Notes:	

PREPARED BY	CHECKED BY	APPROVED BY

REVISION HISTORY

REV.	ECN No.	DESCRIPTION OF CHANGES	DATE	PREPARED
PO		Initial Release	2020.01.15	


Contents

No.	Items	Page
1.0	General Description	4
2.0	Absolute Maximum Ratings	6
3.0	Electrical Specifications	7
4.0	Optical Specifications	12
5.0	Reliability Test	15
6.0	Packing Information	16
7.0	Product Label	18
8.0	Handling & Cautions	19
9.0	Appendix	22

1.0 GENERAL DESCRIPTION

1.1 Introduction

M101B36-218-0501 is a color active matrix TFT LCD FOB using amorphous silicon TFT 's (Thin Film Transistors) as an active switching devices. This module has a 10.1 inch diagonally measured active area with WXGA resolutions (1280 horizontal by 800 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16. 7M colors.

1.2 Features

- LVDS Interface;
- 8bit display 16.7M colors
- High contrast ratio and Transmittance

1.3 Application

• Industrial Instruments etc.

1.4 General Specification The followings are general specifications at the GV101WXB-NN0.

Parameter	Specification	Unit	Remarks
Active Area	216.96(H)*135.6(V)	mm	
Number Of Pixels	1280(H)×800(V)	pixels	
Pixel Pitch	0.0565(H)×RGB×0.1695(V)	mm	
Pixel Arrangement	Pixels RGB stripe arrangement		
Display Mode	Normally Black		
Display Colors	16.7M(8bit)	colors	
Surface Treatment	НС		
Contrast Ratio	1000:1(typ.)		
Viewing Angle(CR>10)	80/80/80/80(typ.)		
Response Time	35(typ.)/40(max.)	ms	
Color Gamut	50%NTSC		
Power Consumption	Panel: 0.6(Typ.) 0.94 (Max.)	watt	typ@Mosai c 8 x 6 max@1DOT
Interface	LVDS 1-port(8bit)		VESA format
Outline Dimension	221.96(H)*144.43(V)*1.06(typ)(FOB -Panel)	mm	

<Table 1. LCD Module Specifications>

2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit.

Parameter		Symbol	Min.	Max.	Unit	Remarks
Power Supply	LCD Module	VDD	VSS-0.3	3.6	V	Ta = 25 °C Note 1&2
Operating Temperature		Т _{ор}	-20	+70	°C	
Storage Temperature		Τ _{st}	-30	+80	°C	

< Table 2. Environment Absolute Maximum Ratings >

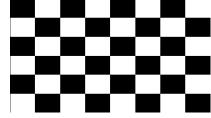
Note:

Note:

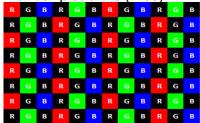
1. These range above is maximum value not the actual operating temperature . Actual Oper ating temperature is no more than 40° C and temperature refers to the LCM surface temper ature ;

2.BOE is not responsible for product problems beyond the use conditions.

3.0 ELECTRICAL SPECIFICATIONS


3.1 TFT LCD Module

D	Parameter		Symbol			11	
Parar			Min.	Тур.	Max.	Unit	Notes
Dowor Sup	ply Voltage	VDD	3.0	3.3	3.6	V	
Power Sup	ply voltage	VRP			300	mV	Ripple
Power Sup	Power Supply Current		-	127	343	mA	Note 1
Power Co	Power Consumption		-	0.42	1.13	W	note i
Rush	current	IRUSH	-	-	3.0	А	
	Input	VIH	2.7		3.3	V	
CMOS	Voltage	VIL	0		0.5	V	
Interface	Output	VOH	2.7		3.3	V	
	Voltage	VOL	0		0.5	V	


< Table 3. LCD Module Electrical specifications > [Ta =25 ±2 °C]

Notes : 1. The supply voltage is measured and specified at the interface connector of LCM. The current draw and power consumption specified is for VDD=3.3V, Frame rate f_v =60Hz and Clock frequency = 72.4MHz. Test Pattern of power supply current

a) Typ : Mosaic 8 x 6 Pattern(L0/L255)

3.2 Back-light Unit

Darar	Parameter		Symbol Values			Unit	Notos
Parai			Min.	Тур.	Max.	Onit	Notes
LED Power s volt	supply Input age	Vled	5	12	18	V	-
Power sup for Bac	oly voltage k light	VLED	-	-	21	V	-
Power sup for Bac	ply current k light	ILED	-	120	-	mA	-
EN Control	Backlight o n	VENH	1.2	-	18	v	En logic hig h voltage
level	Backlight o ff	VENL	-	-	0.4		En logic lo w voltage
PWM Contr	PWM High Level	Vpwh	1.2	-	18	M	-
ol level	PWM Low Level	VPWL	-	-	0.4		-
PWM	PWM duty Ratio		1	-	-	%	-
Control	PWM Frequency	Fpwm	5	-	100	kHZ	-

< Table 4. LED Driving guideline specifications > [Ta =25 ±2 °C]

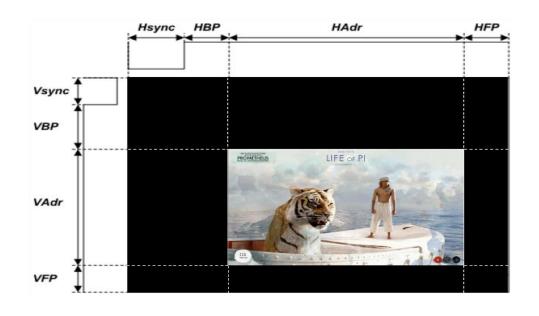
3.3 INPUT TERMINAL PIN ASSIGNMENT

This LCD employs one interface connections, a 40 pin connector is used for the LCD module electronics interface.

3.3.1 Pin assignment for LCD module

Connector : MSAK24025P40G (STM) or equivalent

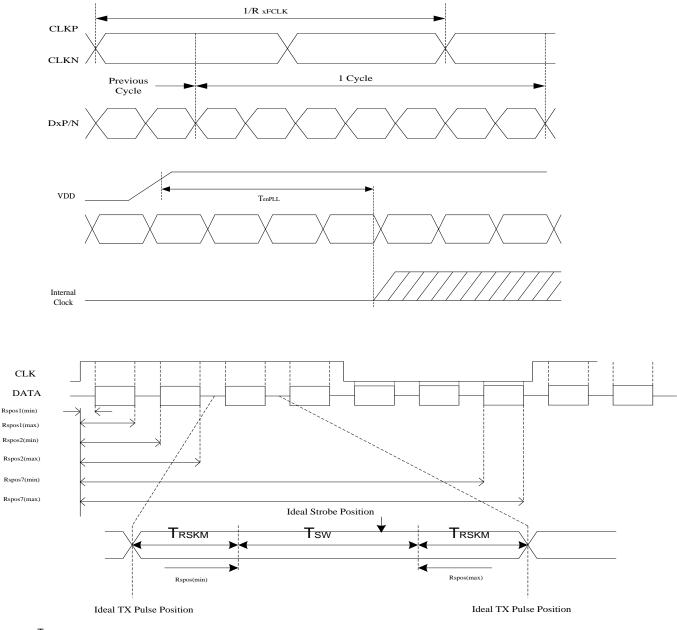
Pin No.	Symbol	Description	I/O
1	NC	Non Connection	-
2	VDDIN		Р
3	VDDIN	Power supply VDDIN=3.3V (Typ.)	Р
4	VDDIN		Р
5	NC	Non Connection	-
6	GND	GROUND	Р
7	GND	GROUND	Р
8	RIN0-	LVDS Negative data signal (-)	Ι
9	RIN0+	LVDS Positive data signal (+)	I
10	GND	GROUND	Р
11	RIN1-	LVDS Negative data signal (-)	I
12	RIN1+	LVDS Positive data signal (+)	I
13	GND	GROUND	Р
14	RIN2-	LVDS Negative data signal (-)	I
15	RIN2+	LVDS Positive data signal (+)	I
16	GND	GROUND	Р
17	LVDS_CLK-	LVDS Negative CLK signal (-)	I
18	LVDS_CLK+	LVDS Positive CLK signal (+)	I
19	GND	GROUND	Р
20	RIN3-	LVDS Negative data signal (-)	I


< Table5. Pin Assignment for LCD Module Connector >

Pin No.	Symbol	Description	I/O
21	RIN3+	LVDS Positive data signal (+)	I
22	GND	GROUND	Р
23	NC	Non Connection	-
24	NC	Non Connection	-
25	GND	GROUND	Р
26	SCL_S	Reserved for LCD manufacturer' s use , not connection	-
27	SDA_S	Reserved for LCD manufacturer' s use , not connection	-
28	GND	GROUND	Р
29	NC	Non Connection	-
30	NC	Non Connection	-
31	GND		
32	GND	GROUND	Р
33	GND		
34	NC	Non Connection	-
35	LED_PWM	LED PWM signal pin	0
36	NC	Non Connection	-
37	NC	Non Connection	-
38	LED+		Р
39	LED+	LED Anode	Р
40	LED+		Р

3.4 Interface timing Parameter

Demonster	Queskal			1.1	
Parameter	Symbol	Min.	Тур.	Max.	Unit
DCLK Frequency	Fdclk	66.3	72.4	78.9	MHz
Horizontal display area	Thd		1280		pixel
HSYNC period time	Th	1380	1440	1500	pixel
HSYNC blanking	thbp+ thfp	100	160	220	pixel
Vertical display area	Tvd		800		Н
Frequency	fV	55	60	65	Hz
VSYNC period time	Τv	824	838	872	Н
VSYNC blanking	T∨bp+ T∨fp	24	38	72	Н

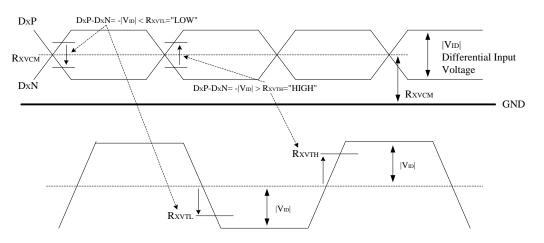

< Table5. LVDS Timing Parameter >

Item	Symbol	Min	Тур	Max	Unit	Remark
Clock frequency	RxFCLK	30	-	TBD	MHz	Refer to input ti ming table for ea ch display resolut ion
Input data skew margin	TRSKM	500	-	_	ps	VID = 200mV RxVCM = 1.2V RxFCLK = 81M Hz
Clock high time	TLVCH	-	4/(7* RxFCLK)	-	ns	
Clock low time	TLVCL	-	3/(7* RxFCLK)	-	ns	
PLL wake-up ti me	TenPLL	-	-	150	us	
Clock frequency	RxFCLK	30	-	TBD	MHz	Refer to input ti ming table for ea ch display resolut ion
Input data skew margin	TRSKM	500	-	-	ps	VID = 200mV RxVCM = 1.2V RxFCLK = 81M Hz
Clock high time	TLVCH	-	4/(7* RxFCLK)	-	ns	
Clock low time	TLVCL	_	3/(7* RxFCLK)	-	ns	

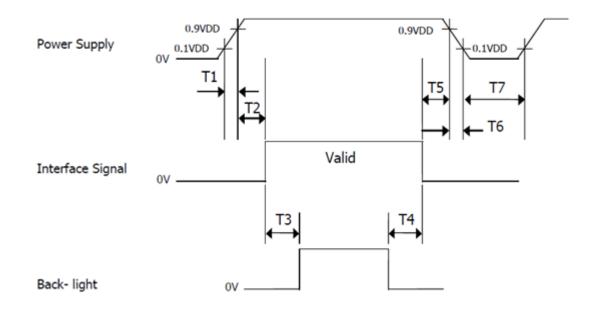
<Table 6. LVDS AC Timing Specification>

3.4 Interface timing Parameter

 TRSKM
 : Receiver strobe margin


 RSPOS
 : Receiver strobe position

 TSW
 : Strobe width (Internal data sampling window)


Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
Differential input high t hreshold voltage	RXVTH	+0.1	0.2	0.3	V	RXVCM=1.2V	
Differential input low th reshold voltage	RXVTL	-0.3	-0.2	-0.1	V	KXVCM=1.2V	
Input voltage range (singled-end)	RXVIN	0.7	-	1.7	V		
Differential input comm on mode voltage	RXVCM	1	1.2	1.4	V	VID =0.2	
Differential input imped ance	ZID	80	100	125	ohm		
Differential input voltag e	VID	0.2	-	0.6	V		
Differential input leaka ge current	ILCLVDS	-10	-	+10	uA		
LVDS Digital Operatin g Current	IVDDMIP I	-	15	20	mA	FDCLK=80MH z,VDD=3.3V, Input pattern: 55h->Aah->55h- >Aah	
LVDS Digital Stand-by Current	ISTMIPI	-	-	250	uA	Clock & all Fun ctions are stoppe d	

<Table7. LVDS DC Timing Specification>

Single-end Signals

3.5 Power Sequence

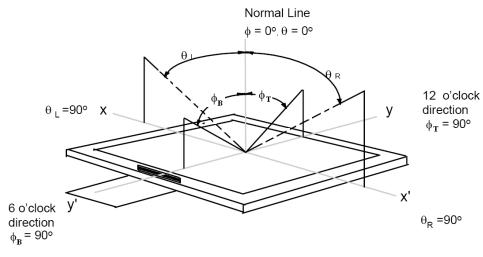
< Table8. Sequence Table >

Donomotor		I.I:4a		
Parameter	Min	Тур	Max	Units
T1	0	-	10	ms
T2	0	-	50	ms
Т3	200	-	-	ms
T4	500	-	-	ms
T5	0	-	50	ms
T6	0	_	10	ms
Τ7	500	-	_	ms

4.0 OPTICAL SPECIFICATIONS

4.1 Overview

The test of optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature = $25\pm2^{\circ}$ C) with the equipment of Luminance meter system (Gonio meter system and TOPCON BM-5) and test unit shall be located at an approximate dista nce 50cm from the LCD surface at a viewing angle of θ and Φ equal to 0°. We refer to $\theta \emptyset = 0$ (= $\theta 3$) as the 3 o' clock direction (the "right"), $\theta \emptyset = 90$ (= $\theta 12$) as the 12 O' clock direction ("upward"), $\theta \emptyset = 180$ (= $\theta 9$) as the 9 O' clock direction ("left") and $\theta \emptyset = 27$ 0(= $\theta 6$) as the 6 O' clock direction ("bottom"). While scanning θ and/or \emptyset , the center of the measuring spot on the Display surface shall stay fixed.

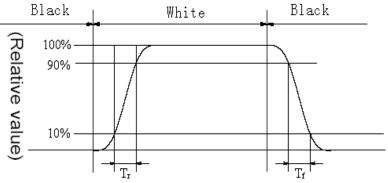

4.2 Optical Specifications

< Table9. Optical Table >

ltem	Symbol	Condition	Min	Тур.	Max	Unit	Note
Viewing Angle	θL	Cr≥10	70	80		deg <u>Note 1</u>	<u>Note 1</u>
	θ_{R}		70	80			
	Ψτ		70	80			
	ΨΒ		70	80			
Contrast Ratio	Cr	θ=0°		1000		I	<u>Note 2</u>
Response Time	Tr+Tf	FF=0°		30	35	ms	<u>Note 3</u>
	Rx	θ=0°	0.588	0.618	0.648	-	<u>Note 4</u> @C光
Color Coordinate of CIE1 931	Ry		0.299	0.329	0.359		
	Gx		0.253	0.283	0.313		
	Gy		0.512	0.542	0.572		
	Bx		0.109	0.139	0.169		
	Ву		0.134	0.164	0.194		
	Wx		0.269	0.299	0.329		
	Wy		0.309	0.339	0.369		
NTSC Ratio	NTSC	CIE1931	45	50		%	<u>Note 5</u>
Polarization Direction of Front Polarizer	PdF	_		0		deg	Absorption axis
Polarization Direction of Rear Polarizer	PdR			90		deg	Note 6
Luminance of white	Yli		300	350		cd/m ₂	

Note 1:The definition of Viewing Angle

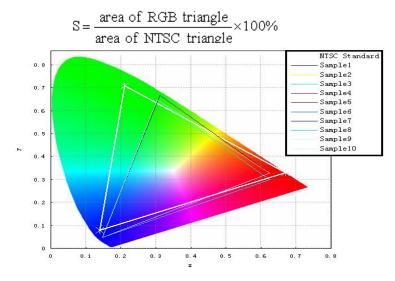
Refer to the graph below marked by θ and ϕ .


Note2:ThedefinitionofContrastRatio

Contrast Ratio(CR)= Luminance When LCD is at "White" state Luminance When LCD is at "Black" state

(Contrast Ratio is measured in optimum common electrode voltage)

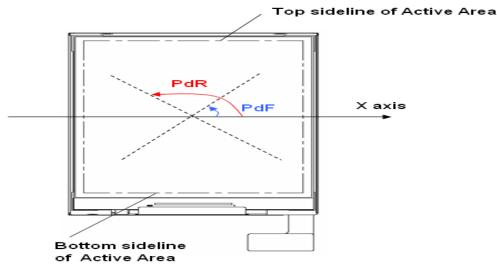
Note3:DefinitionofResponse time.(Test LCD using RD80S or similar equipments):


The output sign also photo detector are measured when the input sign also are changed from "black " to "white" (Voltage falling time) and from "white" to "black" (Voltage rising time), respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to fi gures below.

Note 4: Color Coordinates of CIE 1931

The test condition is at ILED=20mA and measured on the surface of LCD module at 25°C. Measurement equipment:CS2000 or similar equipments

The Color Coordinate (CIE 1931) is the measurement of the center of the display shown in below figure.



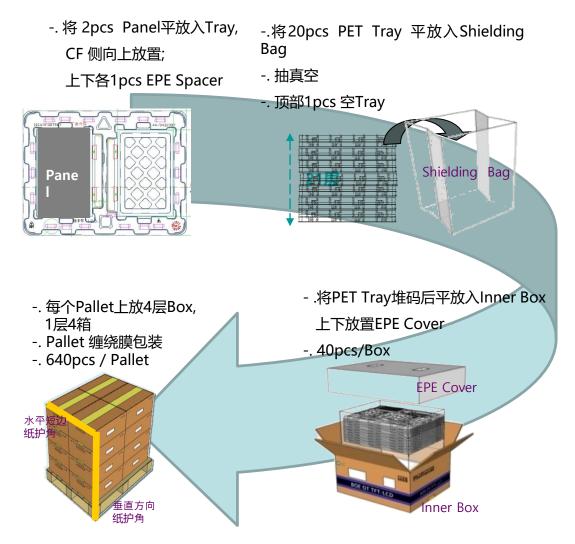
Note 5: Definition of Color of CIE Coordinate and NTSC Ratio.

Note 6: Polarization Direction Definition

•Viewing direction is normal user viewing direction which is vertical to the display surface

- •The polarizer which is closer to viewer is defined as Front Polarizer
- •The polarizer which is on the rear side of viewer is defined as Rear Polarizer
- •The X axis is defined as parallel line to top & bottom sidelines of the Active Area
- •PdF which is marked in blue arrow is polarization degree of Front polarizer
- •PdB which is marked in red arrow is polarization degree of Back polarizer
- •The polarization degree parameter must be indicated in range of 0deg to 180deg according to abov e definition

5.0 RELIABLITY TEST


The Reliability test items and its conditions are shown in below.

No	Test Items	Conditions
1	High temperature storage test	80°C 240hr
2	Low temperature storage test	-30°C 240hr
3	Low temperature operation test	-20°C 240hr
4	High temperature operation test	70°C 240hr
5	High temperature & high humidity (operation test)	60°C 90%RH 240hr
6		
7		
8		
9		
10		

<Table 8. Reliability Test Parameters >

6.0 PACKING INFORMATION(产品形态: FOB)

Packing procedure:

6.1 Packing Note(产品形态: FOB)

- Box Dimension: 510mm(W) x 410mm(D) x 252mm(H)
- Package Quantity in one Box: 40pcs

8.2 Operating Precautions

• (1) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.

• (2) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important

to minimized the interference.

• (3) The electrochemical reaction caused by DC voltage will lead to LCD degradation, so DC drive should be avoided.

• (4) The LCD modules use C-MOS LSI drivers, so customers are recommended that any unused input terminal would be connected to Vdd or Vss, do not input any signals before power is turn on, and ground you body, work/assembly area, assembly equipments to protect against static electricity.

- (5) Do not exceed the absolute maximum rating value. (supply voltage variation, input voltage
- variation, variation in part contents and environmental temperature, and so on) Otherwise the Module may be damaged.
- (6) Design the length of cable to connect between the connector for back-light and the converter as short as possible and the shorter cable shall be connected directly.

The longer cable between that of back-light and that of converter may cause the luminance of LED to lower and need a higher startup voltage(Vs).

- (7) Connectors are precise devices for connecting PCB and transmitting electrical signals. Operators should insert and unplug MDL in parallel when assembling MDL.
- (8) Do not connect or disconnect the cable to/ from the module at the "Power On" condition.
- (9) When the module is operating, do not lose CLK, ENAB signals. If any one these

signals is lost, the LCD panel would be damaged.

- (10) Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.
- (11) Do not re-adjust variable resistor or switch etc.
- (12) For the Q/Single/OC Product, If the LED designed side view, LED bar should be putted in the L ong/short side ; Otherwise, its reliability and function may not be guaranteed.

注:

①(1)涉及到Pol相关条目适用于OC/MDL出货产品,

②(6)(7)涉及到connector相关适用于OC/MDL出货产品

③ (12) 涉及到客户进行BLU设计, LED Bar位置需要避开GOA位置;

8.3 Electrostatic Discharge Control

• (1) Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And

don't touch interface pin directly. Keep products as far away from static electricity as possible.

• (2) Avoid the use work clothing made of synthetic fibers. We recommend cotton clothing or other conductivity-treated fibers.

8.4 Precautions for Strong Light Exposure

It is not allowed to store or run directly in strong light or in high temperature and humidity for a long ti me; Strong light exposure causes degradation of polarizer and color filter.

8.5 Storage Precautions

When storing modules as spares for a long time, the following precautions are necessary.

•(1) The polarizer surface should not come in contact with any other object.

It is recommended that they be stored in the container in which they were shipped.

Temperature : 5 ~ 40 °C

- •(2) Humidity : 35 ~ 75 % RH
- •(3) Period : 6 months
- •(4) Control of ventilation and temperature is necessary.
- •(5) Please make sure to protect the product from strong light exposure, water or moisture. Be careful for condensation.
- •(6) Store in a polyethylene bag with sealed so as not to enter fresh air outside in it.
- •(7)Do not store the LCD near organic solvents or corrosive gasses.
- •(8) Please keep the Modules/OC/FOG at a circumstance shown below Fig.

\sum	No Baking	50°C , 10% , 24hr	5 0°C , 10% , 48hr	>
	2 month	3 month	6 month	

8.6 Precautions for Protection Film

• (1) Remove the protective film slowly, keeping the removing direction approximate

30-degree not vertical from panel surface, If possible, under ESD control device like ion blower, and th e humidity of working room should be kept over 50%RH to reduce the risk of static charge.

• (2) In handling the LCD, wear non-charged material gloves. And the conducting wrist to the earth and the conducting shoes to the earth are necessary.

8.7 Appropriate Condition for Display

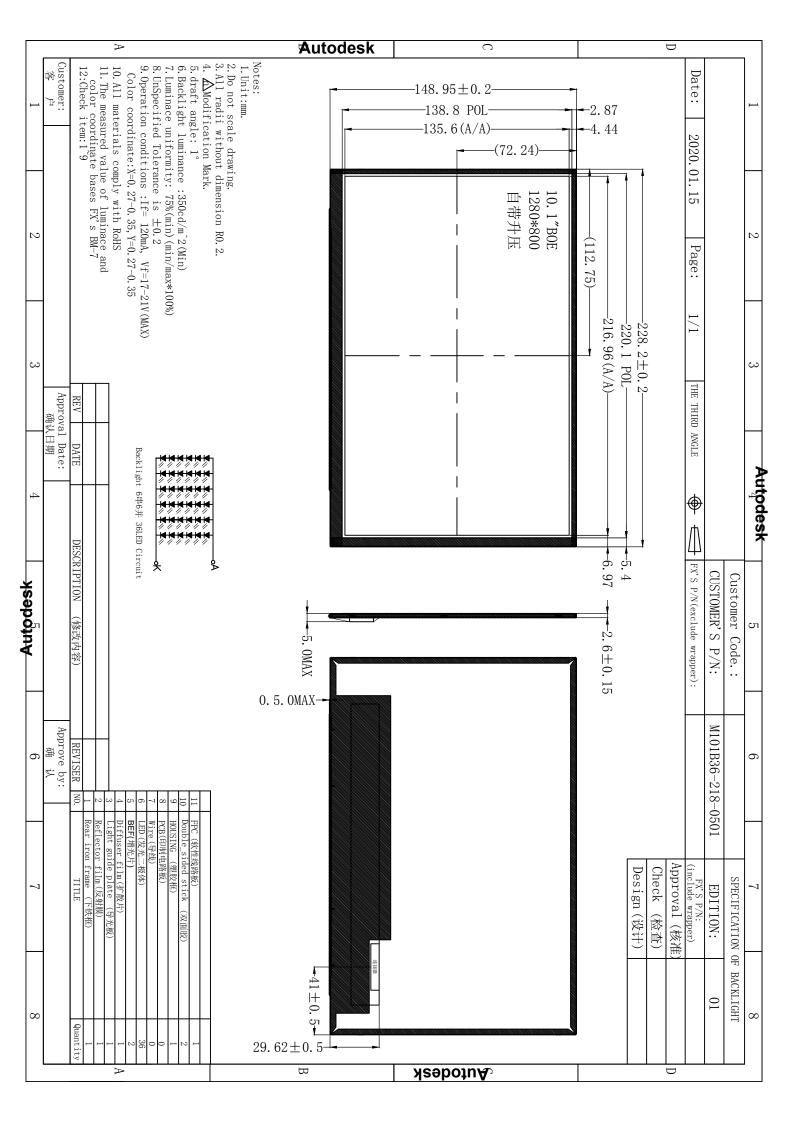
- •(1) Normal operating condition
 - Temperature: $0 \sim 40^{\circ}C$
 - Operating Ambient Humidity : 10 ~ 90 %
 - Display pattern: dynamic pattern (Real display)
 - Suitable operating time: under 12 hours a day.

•(2) Special operating condition

If the product will be used in extreme conditions such as high temperature, humidity, display patterns or 7*24hrs operation time etc.., It is strongly recommended to contact BOE for Application engineering a dvice. Otherwise, its reliability and function may not be guaranteed.

•(3)Black image or moving image is strongly recommended as a screen save.

- (4) Lifetime in this spec. is guaranteed only when commercial display is used according to operating usages.
- (5) Please contact BOE in advance when you display the same pattern for a long time.
- (6) If the Module keeps displaying the same pattern for a long period of time, the image may be "sticked" or "turn off" to the screen. To avoid image sticking, it is recommended to use a screen saver.
- (7) Do not exceed the absolute maximum rating value. (supply voltage variation, input voltage variation, variation in part contents and environmental temperature, and so on) Otherwise the Module m ay be damaged.
- (8) Dew drop atmosphere should be avoided.
- (9) The storage room should be equipped with a good ventilation facility and avoid to expose to corr osive gas, which has a temperature controlling system.
- (10) The LCD should be avoided to expose to corrosive gas for long time, the LCD may be affected by the gas as SO2, H2S etc.
- (11) When expose to drastic fluctuation of temperature (hot to cold or cold to hot) ,the LCD may be affected; Specifically, drastic temperature fluctuation from cold to hot ,produces dew on the LCD's surface which may affect the operation of the polarizer and the LCD.
- (12) Response time will be extremely delayed at lower temperature than the operating temperature r ange and on the other hand at higher temperature LCD may turn black at temperature above its opera tional range. However those phenomena do not mean malfunction or out of order with the LCD. The LCD will revert to normal operation once the temperature returns to the recommended temperature r ange for normal operation


8.8 Others

A. LC Leak

- If the liquid crystal material leaks from the panel, it is recommended to wash the LC with acetone or ethanol and then burn it.
- In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- If LC in mouth, mouth need to be washed, drink plenty of water to induce vomiting and follow medical advice.
- If LC touch eyes, eyes need to be washed with running water at least 15 minutes.

B. Rework

- When returning the module for repair or etc., Please pack the module not to be broken. We recommend to use the original shipping packages.
- C. In order to prevent potential problems, flicker should be adjusted by optimizing the Vcom value in customer LCM Line (适用于Q/Single/OC出货产品)

